Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Neuroendocrinology ; 114(1): 25-41, 2024.
Article in English | MEDLINE | ID: mdl-37699381

ABSTRACT

INTRODUCTION: The ventromedial hypothalamic nucleus (VMN) is an estrogen receptor (ER)-rich structure that regulates glucostasis. The role of nuclear but not membrane G protein-coupled ER-1 (GPER) in that function has been studied. METHODS: Gene silencing and laser-catapult microdissection/immunoblot tools were used to examine whether GPER regulates transmitter and energy sensor function in dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN counter-regulatory nitrergic and γ-Aminobutyric acid (GABA) neurons. RESULTS: Intra-VMN GPER siRNA administration to euglycemic animals did not affect VMNdm or -vl nitrergic neuron nitric oxide synthase (nNOS), but upregulated (VMNdm) or lacked influence on (VMNvl) GABA nerve cell glutamate decarboxylase65/67 (GAD) protein. Insulin-induced hypoglycemia (IIH) caused GPER knockdown-reversible augmentation of nNOS, 5'-AMP-activated protein kinase (AMPK), and phospho-AMPK proteins in nitrergic neurons in both divisions. IIH had dissimilar effects on VMNvl (unchanged) versus VMNdm (increased) GABAergic neuron GAD levels, yet GPER knockdown affected these profiles. GPER siRNA prevented hypoglycemic upregulation of VMNvl and -dm GABA neuron AMPK without altering pAMPK expression. CONCLUSIONS: Outcomes infer that GPER exerts differential control of VMNdm versus -vl GABA transmission during glucostasis and is required for hypoglycemic upregulated nitrergic (VMNdm and -vl) and GABA (VMNdm) signaling. Glycogen metabolism is reported to regulate VMN nNOS and GAD proteins. Data show that GPER limits VMNvl glycogen phosphorylase (GP) protein expression and glycogen buildup during euglycemia but mediates hypoglycemic augmentation of VMNvl GP protein and glycogen content; VMNdm glycogen mass is refractory to GPER control. GPER regulation of VMNvl glycogen metabolism infers that this receptor may govern local counter-regulatory transmission in part by astrocyte metabolic coupling.


Subject(s)
Hypoglycemia , Ventromedial Hypothalamic Nucleus , Rats , Animals , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Rats, Sprague-Dawley , Norepinephrine/metabolism , Norepinephrine/pharmacology , Receptors, Estrogen/metabolism , Hypoglycemia/metabolism , Glycogen/metabolism , Glycogen/pharmacology , Hypoglycemic Agents/pharmacology , gamma-Aminobutyric Acid/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/pharmacology
2.
ASN Neuro ; 15: 17590914231214116, 2023.
Article in English | MEDLINE | ID: mdl-38031405

ABSTRACT

Pharmacological stimulation/antagonism of astrocyte glio-peptide octadecaneuropeptide signaling alters ventromedial hypothalamic nucleus (VMN) counterregulatory γ-aminobutyric acid (GABA) and nitric oxide transmission. The current research used newly developed capillary zone electrophoresis-mass spectrometry methods to investigate hypoglycemia effects on VMN octadecaneuropeptide content, along with gene knockdown tools to determine if octadecaneuropeptide signaling regulates these transmitters during eu- and/or hypoglycemia. Hypoglycemia caused dissimilar adjustments in the octadecaneuropeptide precursor, i.e., diazepam-binding-inhibitor and octadecaneuropeptide levels in dorsomedial versus ventrolateral VMN. Intra-VMN diazepam-binding-inhibitor siRNA administration decreased baseline 67 and 65 kDa glutamate decarboxylase mRNA levels in GABAergic neurons laser-microdissected from each location, but only affected hypoglycemic transcript expression in ventrolateral VMN. This knockdown therapy imposed dissimilar effects on eu- and hypoglycemic glucokinase and 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) gene profiles in dorsomedial versus ventrolateral GABAergic neurons. Diazepam-binding-inhibitor gene silencing up-regulated baseline (dorsomedial) or hypoglycemic (ventrolateral) nitrergic neuron neuronal nitric oxide synthase mRNA profiles. Baseline nitrergic cell glucokinase mRNA was up- (ventrolateral) or down- (dorsomedial) regulated by diazepam-binding-inhibitor siRNA, but knockdown enhanced hypoglycemic profiles in both sites. Nitrergic nerve cell AMPKα1 and -α2 transcripts exhibited division-specific responses to this genetic manipulation during eu- and hypoglycemia. Results document the utility of capillary zone electrophoresis-mass spectrometric tools for quantification of ODN in small-volume brain tissue samples. Data show that hypoglycemia has dissimilar effects on ODN signaling in the two major neuroanatomical divisions of the VMN and that this glio-peptide imposes differential control of glucose-regulatory neurotransmission in the VMNdm versus VMNvl during eu- and hypoglycemia.


Subject(s)
Glucose , Hypoglycemia , Rats , Animals , Glucose/metabolism , Ventromedial Hypothalamic Nucleus , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , Rats, Sprague-Dawley , Diazepam Binding Inhibitor/metabolism , Diazepam Binding Inhibitor/pharmacology , Glucokinase/metabolism , Glucokinase/pharmacology , Glycogen/metabolism , Hypoglycemia/genetics , Hypoglycemia/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Diazepam/metabolism , Diazepam/pharmacology
3.
Neuroglia ; 4(3): 158-171, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37485036

ABSTRACT

The plasma membrane glucose transporter (GLUT)-2 is unique among GLUT family proteins in that it also functions as a glucose sensor. GLUT2 imposes sex-dimorphic control of hypothalamic astrocyte glucose storage and catabolism by unknown mechanisms. Mitogen-activated protein kinase (MAPK) signaling cascades operate within stress-sensitive signal transduction pathways. Current research employed an established primary astrocyte culture model and gene knockdown tools to investigate whether one or more of the three primary MAP kinase families are regulated by GLUT2. GLUT2 gene knockdown caused opposing adjustments in total ERK1/2 proteins in glucose-supplied male versus female astrocytes, augmenting or reducing the mean phosphorylated/total protein ratio for 44 and 42 kDa variants in these sexes. Glucose deprivation amplified this ratio for both ERK1/2 variants, albeit by a larger magnitude in male; GLUT2 siRNA exacerbated this stimulatory response in males only. Phosphorylated/total p38 MAPK protein ratios were up-regulated by GLUT2 knockdown in male, but not female astrocytes. Glucose-deprived astrocytes exhibited no change (male) or reduction (female) in this ratio after GLUT2 gene silencing. GLUT2 siRNA increased the phosphorylated/total protein ratio for 54 and 46 kDa SAPK/JNK proteins in each sex when glucose was present. However, glucose withdrawal suppressed (male) or amplified (female) these ratios, while GLUT2 knockdown attenuated these inverse responses. Results show that GLUT2 inhibits ERK1/2, p38, and SAPK/JNK MAPK activity in male, but differentially stimulates and inhibits activity of these signaling pathways in female hypothalamic astrocytes. Glucoprivation induces divergent adjustments in astrocyte p38 MAPK and SAPK/JNK activities. The findings demonstrate a stimulatory role for GLUT2 in p38 MAPK activation in glucose-starved female astrocytes, but can act as either an inhibitor or inducer of SAPK/JNK activation in glucose-deprived male versus female glial cells, respectively.

4.
Mol Cell Neurosci ; 126: 103863, 2023 09.
Article in English | MEDLINE | ID: mdl-37268282

ABSTRACT

Glucose accesses the brain primarily via the astrocyte cell compartment, where it passes through the glycogen shunt before catabolism to the oxidizable fuel L-lactate. Glycogen phosphorylase (GP) isoenzymes GPbb and GPmm impose distinctive control of ventromedial hypothalamic nucleus (VMN) glucose-regulatory neurotransmission during hypoglycemia, but lactate and/or gliotransmitter involvement in those actions is unknown. Lactate or the octadecaneuropeptide receptor antagonist cyclo(1-8)[DLeu5] OP (LV-1075) did not affect gene product down-regulation caused by GPbb or GPmm siRNA, but suppressed non-targeted GP variant expression in a VMN region-specific manner. Hypoglycemic up-regulation of neuronal nitric oxide synthase was enhanced in rostral and caudal VMN by GPbb knockdown, yet attenuated by GPMM siRNA in the middle VMN; lactate or LV-1075 reversed these silencing effects. Hypoglycemic inhibition of glutamate decarboxylase65/67 was magnified by GPbb (middle and caudal VMN) or GPmm (middle VMN) knockdown, responses that were negated by lactate or LV-1075. GPbb or GPmm siRNA enlarged hypoglycemic VMN glycogen profiles in rostral and middle VMN. Lactate and LV-1075 elicited progressive rostral VMN glycogen augmentation in GPbb knockdown rats, but stepwise-diminution of rostral and middle VMN glycogen after GPmm silencing. GPbb, not GPmm, knockdown caused lactate or LV-1075 - reversible amplification of hypoglycemic hyperglucagonemia and hypercorticosteronemia. Results show that lactate and octadecaneuropeptide exert opposing control of GPbb protein in distinct VMN regions, while the latter stimulates GPmm. During hypoglycemia, GPbb and GPmm may respectively diminish (rostral, caudal VMN) or enhance (middle VMN) nitrergic transmission and each oppose GABAergic signaling (middle VMN) by lactate- and octadecaneuropeptide-dependent mechanisms.


Subject(s)
Hypoglycemia , Ventromedial Hypothalamic Nucleus , Rats , Animals , Ventromedial Hypothalamic Nucleus/metabolism , Isoenzymes/metabolism , Rats, Sprague-Dawley , Hypoglycemia/metabolism , Glucose/metabolism , Glycogen/metabolism , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Neurotransmitter Agents/pharmacology , Glycogen Phosphorylase/metabolism , Glycogen Phosphorylase/pharmacology , Lactates/metabolism , Lactates/pharmacology , Hormones/metabolism , Hormones/pharmacology
5.
Biology (Basel) ; 12(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36829519

ABSTRACT

The enzyme aromatase is expressed at high levels in the ventromedial hypothalamic nucleus (VMN), a principal component of the brain gluco-regulatory network. Current research utilized selective gene knockdown tools to investigate the premise that VMN neuroestradiol controls glucostasis. Intra-VMN aromatase siRNA administration decreased baseline aromatase protein expression and tissue estradiol concentrations and either reversed or attenuated the hypoglycemic regulation of these profiles in a VMN segment-specific manner. Aromatase gene repression down-regulated protein biomarkers for gluco-stimulatory (nitric oxide; NO) and -inhibitory (gamma-aminobutyric acid; GABA) neurochemical transmitters. Insulin-induced hypoglycemia (IIH) up- or down-regulated neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD), respectively, throughout the VMN. Interestingly, IIH caused divergent changes in tissue aromatase and estradiol levels in rostral (diminished) versus middle and caudal (elevated) VMN. Aromatase knockdown prevented hypoglycemic nNOS augmentation in VMN middle and caudal segments, but abolished the GAD inhibitory response to IIH throughout this nucleus. VMN nitrergic and GABAergic neurons monitor stimulus-specific glycogen breakdown. Here, glycogen synthase (GS) and phosphorylase brain- (GPbb; AMP-sensitive) and muscle- (GPmm; noradrenergic -responsive) type isoform responses to aromatase siRNA were evaluated. Aromatase repression reduced GPbb and GPmm content in euglycemic controls and prevented hypoglycemic regulation of GPmm but not GPbb expression while reversing glycogen accumulation. Aromatase siRNA elevated baseline glucagon and corticosterone secretion and abolished hypoglycemic hyperglucagonemia and hypercorticosteronemia. Outcomes document the involvement of VMN neuroestradiol signaling in brain control of glucose homeostasis. Aromatase regulation of VMN gluco-regulatory signaling of hypoglycemia-associated energy imbalance may entail, in part, control of GP variant-mediated glycogen disassembly.

6.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R20-R34, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36409024

ABSTRACT

Astrocytes store glycogen as energy and promote neurometabolic stability through supply of oxidizable l-lactate. Whether lactate regulates ventromedial hypothalamic nucleus (VMN) glucostatic function as a metabolic volume transmitter is unknown. Current research investigated whether G protein-coupled lactate receptor GPR81 controls astrocyte glycogen metabolism and glucose-regulatory neurotransmission in the ventrolateral VMN (VMNvl), where glucose-regulatory neurons reside. Female rats were pretreated by intra-VMN GPR81 or scramble siRNA infusion before insulin or vehicle injection. VMNvl cell or tissue samples were acquired by laser-catapult- or micropunch microdissection for Western blot protein or uHPLC-electrospray ionization-mass spectrometric glycogen analyses. Data show that GPR81 regulates eu- and/or hypoglycemic patterns of VMNvl astrocyte glycogen metabolic enzyme and 5'-AMP-activated protein kinase (AMPK) protein expression according to VMNvl segment. GPR81 stimulates baseline rostral and caudal VMNvl glycogen accumulation but mediates glycogen breakdown in the former site during hypoglycemia. During euglycemia, GPR81 suppresses the transmitter marker neuronal nitric oxide synthase (nNOS) in rostral and caudal VMNvl nitrergic neurons, but stimulates (rostral VMNvl) or inhibits (caudal VMNvl) GABAergic neuron glutamate decarboxylase65/67 (GAD)protein. During hypoglycemia, GPR81 regulates AMPK activation in nitrergic and GABAergic neurons located in the rostral, but not caudal VMNvl. VMN GPR81 knockdown amplified hypoglycemic hypercorticosteronemia, but not hyperglucagonemia. Results provide novel evidence that VMNvl astrocyte and glucose-regulatory neurons express GPR81 protein. Data identify neuroanatomical subpopulations of VMNvl astrocytes and glucose-regulatory neurons that exhibit differential reactivity to GPR81 input. Heterogeneous GPR81 effects during eu- versus hypoglycemia infer that energy state may affect cellular sensitivity to or postreceptor processing of lactate transmitter signaling.


Subject(s)
Astrocytes , Hypoglycemia , Receptors, G-Protein-Coupled , Ventromedial Hypothalamic Nucleus , Animals , Female , Rats , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Glycogen/metabolism , Hypoglycemia/metabolism , Lactic Acid/metabolism , Neurotransmitter Agents/metabolism , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Astrocytes/metabolism
7.
Neurochem Res ; 48(2): 404-417, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36173588

ABSTRACT

The plasma membrane glucose transporter-2 (GLUT2) monitors brain cell uptake of the critical nutrient glucose, and functions within astrocytes of as-yet-unknown location to control glucose counter-regulation. Hypothalamic astrocyte-neuron metabolic coupling provides vital cues to the neural glucostatic network. Current research utilized an established hypothalamic primary astrocyte culture model along with gene knockdown tools to investigate whether GLUT2 imposes sex-specific regulation of glucose/energy sensor function and glycogen metabolism in this cell population. Data show that GLUT2 stimulates or inhibits glucokinase (GCK) expression in glucose-supplied versus -deprived male astrocytes, but does not control this protein in female. Astrocyte 5'-AMP-activated protein kinaseα1/2 (AMPK) protein is augmented by GLUT2 in each sex, but phosphoAMPKα1/2 is coincidently up- (male) or down- (female) regulated. GLUT2 effects on glycogen synthase (GS) diverges in the two sexes, but direction of this control is reversed by glucoprivation in each sex. GLUT2 increases (male) or decreases (female) glycogen phosphorylase-brain type (GPbb) protein during glucoprivation, yet simultaneously inhibits (male) or stimulates (female) GP-muscle type (GPmm) expression. Astrocyte glycogen accumulation is restrained by GLUT2 when glucose is present (male) or absent (both sexes). Outcomes disclose sex-dependent GLUT2 control of the astrocyte glycolytic pathway sensor GCK. Data show that glucose status determines GLUT2 regulation of GS (both sexes), GPbb (female), and GPmm (male), and that GLUT2 imposes opposite control of GS, GPbb, and GPmm profiles between sexes during glucoprivation. Ongoing studies aim to investigate molecular mechanisms underlying sex-dimorphic GLUT2 regulation of hypothalamic astrocyte metabolic-sensory and glycogen metabolic proteins, and to characterize effects of sex-specific astrocyte target protein responses to GLUT2 on glucose regulation.


Subject(s)
Astrocytes , Glucose , Rats , Animals , Male , Female , Glucose/metabolism , Astrocytes/metabolism , Rats, Sprague-Dawley , Glycogen/metabolism , Glucose Transport Proteins, Facilitative/metabolism
8.
Transl Neurosci ; 13(1): 408-420, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-36518559

ABSTRACT

Brain metabolic-sensory targets for modulatory glucose-sensitive endocrine and neurochemical signals remain unidentified. A hypothalamic astrocyte primary culture model was here used to investigate whether glucocorticoid receptor (GR) and noradrenergic signals regulate astrocyte glucose (glucose transporter-2 [GLUT2], glucokinase) and/or energy (5'-AMP-activated protein kinase [AMPK]) sensor reactivity to glucoprivation by sex. Glucose-supplied astrocytes of each sex showed increased GLUT2 expression after incubation with the GR agonist dexamethasone (DEX) or norepinephrine (NE); DEX plus NE (DEX/NE) augmented GLUT2 in the female, but not in male. Glucoprivation did not alter GLUT2 expression, but eliminated NE regulation of this protein in both sexes. Male and female astrocyte glucokinase profiles were refractory to all drug treatments, but were down-regulated by glucoprivation. Glucoprivation altered AMPK expression in male only, and caused divergent sex-specific changes in activated, i.e., phosphoAMPK (pAMPK) levels. DEX or DEX/NE inhibited (male) or stimulated (female) AMPK and pAMPK proteins in both glucose-supplied and -deprived astrocytes. In male, NE coincidently up-regulated AMPK and inhibited pAMPK profiles in glucose-supplied astrocytes; these effects were abolished by glucoprivation. In female, AMPK profiles were unaffected by NE irrespective of glucose status, whereas pAMPK expression was up-regulated by NE only during glucoprivation. Present outcomes document, for each sex, effects of glucose status on hypothalamic astrocyte glucokinase, AMPK, and pAMPK protein expression and on noradrenergic control of these profiles. Data also show that DEX and NE regulation of GLUT2 is sex-monomorphic, but both stimuli impose divergent sex-specific effects on AMPK and pAMPK. Further effort is warranted to characterize mechanisms responsible for sex-dimorphic GR and noradrenergic governance of hypothalamic astrocyte energy sensory function.

9.
Mol Cell Endocrinol ; 553: 111698, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35718260

ABSTRACT

Astrocyte glycogen constitutes the primary energy fuel reserve in the brain. Current research investigated the novel premise that glycogen turnover governs astrocyte responsiveness to critical metabolic and neurotransmitter (norepinephrine) regulatory signals in a sex-dimorphic manner. Here, rat hypothalamic astrocyte glycogen phosphorylase (GP) gene expression was silenced by short-interfering RNA (siRNA) to investigate how glycogen metabolism controlled by GP-brain type (GPbb) or GP-muscle type (GPmm) activity affects glucose [glucose transporter-2 (GLUT2)] and energy [5'-AMP-activated protein kinase (AMPK)] sensor and adrenergic receptor (AR) proteins in each sex. Results show that in the presence of glucose, glycogen turnover is regulated by GPbb in the male or by GPmm in the female, yet in the absence of glucose, glycogen breakdown is controlled by GPbb in each sex. GLUT2 expression is governed by GPmm-mediated glycogen breakdown in glucose-supplied astrocytes of each sex, but glycogenolysis controls glucoprivic GLUT2 up-regulation in male only. GPbb-mediated glycogen disassembly causes divergent changes in total AMPK versus phosphoAMPK profiles in male. During glucoprivation, glycogenolysis up-regulates AMPK content in male astrocytes by GPbb- and GPmm-dependent mechanisms, whereas GPbb-mediated glycogen breakdown inhibits phosphoAMPK expression in female. GPbb and GPmm activity governs alpha2-AR and beta1-AR protein levels in male, but has no effect on these profiles in the female. Outcomes provide novel evidence for sex-specific glycogen regulation of glucose- and energy-sensory protein expression in hypothalamic astrocytes, and identify GP isoforms that mediate such control in each sex. Results also show that glycogen regulation of hypothalamic astrocyte receptivity to norepinephrine is male-specific. Further studies are needed to characterize the molecular mechanisms that underlie sex differences in glycogen control of astrocyte protein expression.


Subject(s)
Glucose , Hypoglycemia , AMP-Activated Protein Kinases/metabolism , Animals , Astrocytes/metabolism , Female , Glucose/metabolism , Glycogen/metabolism , Glycogen Phosphorylase/metabolism , Hypoglycemia/metabolism , Male , Norepinephrine/metabolism , Norepinephrine/pharmacology , Protein Isoforms/metabolism , Rats , Rats, Sprague-Dawley
10.
Neuroglia ; 3(4): 144-157, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36685006

ABSTRACT

Astrocyte glycogen is a critical metabolic variable that impacts hypothalamic control of glucostasis. Glucocorticoid hormones regulate peripheral glycogen, but their effects on hypothalamic glycogen are not known. A hypothalamic astrocyte primary culture model was used to investigate the premise that glucocorticoids impose sex-dimorphic independent and interactive control of glycogen metabolic enzyme protein expression and glycogen accumulation. The glucocorticoid receptor (GR) agonist dexamethasone (DEX) down-regulated glycogen synthase (GS), glycogen phosphorylase (GP)-brain type (GPbb), and GP-muscle type (GPmm) proteins in glucose-supplied male astrocytes, but enhanced these profiles in female. The catecholamine neurotransmitter norepinephrine (NE) did not alter these proteins, but amplified DEX inhibition of GS and GPbb in male or abolished GR stimulation of GPmm in female. In both sexes, DEX and NE individually increased glycogen content, but DEX attenuated the magnitude of noradrenergic stimulation. Glucoprivation suppressed GS, GPbb, and GPmm in male, but not female astrocytes, and elevated or diminished glycogen in these sexes, respectively. Glucose-deprived astrocytes exhibit GR-dependent induced glycogen accumulation in both sexes, and corresponding loss (male) or attenuation (female) of noradrenergic-dependent glycogen build-up. Current evidence for GR augmentation of hypothalamic astrocyte glycogen content in each sex, yet divergent effects on glycogen enzyme proteins infers that glucocorticoids may elicit opposite adjustments in glycogen turnover in each sex. Results document GR modulation of NE stimulation of glycogen accumulation in the presence (male and female) or absence (female) of glucose. Outcomes provide novel proof that astrocyte energy status influences the magnitude of GR and NE signal effects on glycogen mass.

11.
Sci Rep ; 11(1): 16079, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373537

ABSTRACT

Astrocyte glycogen, the primary energy reserve in brain, undergoes continuous remodeling by glucose passage through the glycogen shunt prior to conversion to the oxidizable energy fuel L-lactate. Glucogenic amino acids (GAAs) are a potential non-glucose energy source during neuro-metabolic instability. Current research investigated whether diminished glycogen metabolism affects GAA homeostasis in astrocyte and/or nerve cell compartments. The glycogen phosphorylase (GP) inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) was injected into the ventromedial hypothalamic nucleus (VMN), a key metabolic-sensing structure, before vehicle or L-lactate infusion. Pure VMN astrocyte and metabolic-sensory neuron samples were obtained by combinatory immunocytochemistry/laser-catapult-microdissection for UHPLC-electrospray ionization-mass spectrometry (LC-ESI-MS) GAA analysis. DAB inhibition of VMN astrocyte aspartate and glutamine (Gln) levels was prevented or exacerbated, respectively, by lactate. VMN gluco-stimulatory nitric oxide (NO; neuronal nitric oxide synthase-immunoreactive (ir)-positive) and gluco-inhibitory γ-aminobutyric acid (GABA; glutamate decarboxylase65/67-ir-positive) neurons exhibited lactate-reversible asparate and glutamate augmentation by DAB, but dissimilar Gln responses to DAB. GP inhibition elevated NO and GABA nerve cell GABA content, but diminished astrocyte GABA; these responses were averted by lactate in neuron, but not astrocyte samples. Outcomes provide proof-of-principle of requisite LC-ESI-MS sensitivity for GAA measurement in specific brain cell populations. Results document divergent effects of decreased VMN glycogen breakdown on astrocyte versus neuron GAAs excepting Gln. Lactate-reversible DAB up-regulation of metabolic-sensory neuron GABA signaling may reflect compensatory nerve cell energy stabilization upon decline in astrocyte-derived metabolic fuel.


Subject(s)
Amino Acids/metabolism , Brain/metabolism , Glycogen/metabolism , Neurotransmitter Agents/metabolism , Animals , Astrocytes/metabolism , Chromatography, High Pressure Liquid/methods , Female , Glucose/metabolism , Glycogen Phosphorylase/metabolism , Glycogenolysis/physiology , Neurons/metabolism , Nitric Oxide/metabolism , Norepinephrine/metabolism , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization/methods , Ventromedial Hypothalamic Nucleus/metabolism , gamma-Aminobutyric Acid/metabolism
12.
Acta Neurobiol Exp (Wars) ; 81(2): 196-206, 2021.
Article in English | MEDLINE | ID: mdl-34170267

ABSTRACT

Glycogen metabolism shapes ventromedial hypothalamic nucleus (VMN) control of glucose homeostasis. Brain glycogen mass undergoes compensatory expansion post­recovery from insulin­induced hypoglycemia (IIH). Current research utilized combinatory high­resolution microdissection/high­sensitivity Western blotting to investigate whether IIH causes residual adjustments in glycogen metabolism within the metabolic­sensory ventrolateral VMN (VMNvl). Micropunch­dissected tissue was collected from rostral, middle, and caudal levels of the VMNvl in each sex for analysis of glycogen synthase (GS) and glycogen phosphorylase (GP)­muscle type (GPmm; norepinephrine­sensitive) and GP­brain type (GPbb; glucoprivic­sensitive) isoform expression during and after IIH. Hypoglycemic suppression of VMNvl GS levels in males disappeared or continued after reestablishment of euglycemia, according to sampled segment. Yet, reductions in female VMNvl GS persisted after IIH. Males exhibited reductions in GPmm content in select rostro­caudal VMNvl segments, but this protein declined in each segment post­hypoglycemia. Females, rather, showed augmented or diminished GPmm levels during IIH, but no residual effects of IIH on this protein. In each sex, region­specific up­ or down­regulation of VMNvl GPbb profiles during glucose decrements were undetected post­recovery from IIH. Results provide novel proof of estradiol­dependent sex­dimorphic patterns of VMNvl GP variant expression at specific rostro­caudal levels of this critical gluco­regulatory structure. Sex differences in persistence of IIH­associated GS and GPmm patterns of expression after restoration of euglycemia infer that VMNvl recovery from this metabolic stress may involve dissimilar glycogen accumulation in male versus female.


Subject(s)
Estradiol/pharmacology , Glycogen Phosphorylase/metabolism , Hypoglycemic Agents/pharmacology , Sex Factors , Ventromedial Hypothalamic Nucleus/drug effects , Animals , Estradiol/metabolism , Female , Glucose/metabolism , Glucose/pharmacology , Glycogen/metabolism , Glycogen/pharmacology , Glycogen Phosphorylase/pharmacology , Male , Rats
13.
Endocr Metab Sci ; 32021 Jun 30.
Article in English | MEDLINE | ID: mdl-33997825

ABSTRACT

Ventromedial hypothalamic nucleus (VMN) glycogen metabolism affects local glucoregulatory signaling. The hindbrain metabolic-sensitive catecholamine (CA) neurotransmitter norepinephrine controls VMN glycogen phosphorylase (GP)-muscle (GPmm) and -brain (GPbb) type expression in male rats. Present studies addressed the premise that CA regulation of hypoglycemic patterns of VMN glycogen metabolic enzyme protein expression is sex-dimorphic, and that this signal is responsible for sex differences in acclimation of these profiles to recurrent insulin-induced hypoglycemia (RIIH). VMN tissue was acquired by micropunch-dissection from male and female rats pretreated by caudal fourth ventricular administration of the CA neurotoxin 6-hydroxydopamine (6OHDA) before single or serial insulin injection. 6-OHDA averted acute hypoglycemic inhibition of VMN glycogen synthase (GS) and augmentation of GPmm and GPbb protein expression in males, and prevented GPmm and -bb down-regulation in females. Males recovered from antecedent hypoglycemia (AH) exhibited neurotoxin-preventable diminution of baseline GS profiles, whereas acclimated GPmm and -bb expression in females occurred irrespective of pretreatment. RIIH did not alter VMN GS, GPmm, and GPbb expression in vehicle- or 6-OHDA-pretreated animals of either sex. VMN glycogen content was correspondingly unchanged or increased in males versus females following AH; 6-OHDA augmented glycogen mass in AH-exposed animals of both sexes. RIIH did not alter VMN glycogen accumulation in vehicle-pretreated rats of either sex, but diminished glycogen in neurotoxin-pretreated animals. AH suppresses baseline GS (CA-dependent) or GPmm/GPbb (CA-independent) expression in male and female rats, respectively, which corresponds with unaltered or augmented VMN glycogen content in those sexes. AH-associated loss of sex-distinctive CA-mediated enzyme protein sensitivity to hypoglycemia (male: GS, GPmm, GPbb; female: GPmm, Gpbb) may reflect, in part, VMN target desensitization to noradrenergic input.

14.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R791-R799, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33825506

ABSTRACT

Astrocyte glycogen is dynamically remodeled during metabolic stability and provides oxidizable l-lactate equivalents during neuroglucopenia. Current research investigated the hypothesis that ventromedial hypothalamic nucleus (VMN) glycogen metabolism controls glucostimulatory nitric oxide (NO) and/or glucoinhibitory gamma-aminobutyric acid (GABA) neuron 5'-AMP-activated protein kinase (AMPK) and transmitter marker, e.g., neuronal nitric oxide synthase (nNOS), and glutamate decarboxylase65/67 (GAD) protein expression. Adult ovariectomized estradiol-implanted female rats were injected into the VMN with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) before vehicle or l-lactate infusion. Western blot analysis of laser-catapult-microdissected nitrergic and GABAergic neurons showed that DAB caused lactate-reversible upregulation of nNOS and GAD proteins. DAB suppressed or increased total AMPK content of NO and GABA neurons, respectively, by lactate-independent mechanisms, but lactate prevented drug enhancement of pAMPK expression in nitrergic neurons. Inhibition of VMN glycogen disassembly caused divergent changes in counter-regulatory hormone, e.g. corticosterone (increased) and glucagon (decreased) secretion. Outcomes show that VMN glycogen metabolism controls local glucoregulatory transmission by means of lactate signal volume. Results implicate glycogen-derived lactate deficiency as a physiological stimulus of corticosterone release. Concurrent normalization of nitrergic neuron nNOS and pAMPK protein and corticosterone secretory response to DAB by lactate infers that the hypothalamic-pituitary-adrenal axis may be activated by VMN NO-mediated signals of cellular energy imbalance.


Subject(s)
Lactic Acid/metabolism , Norepinephrine/pharmacology , Sensory Receptor Cells/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Estradiol/pharmacology , Neurotransmitter Agents/metabolism , Pituitary-Adrenal System/metabolism , Rats, Sprague-Dawley , Receptors, Estrogen/drug effects , Rhombencephalon/metabolism
15.
J Mass Spectrom ; 56(2): e4680, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33462970

ABSTRACT

The amino acid glutamine (Gln) is a likely source of energy in the brain during neuroglucopenia. Effects of glucose deficiency on astrocyte Gln homeostasis remain unclear, as analytical tools of requisite sensitivity for quantification of intracellular levels of this molecule are not currently available. Here, a primary hypothalamic astrocyte culture model was used in conjunction with design of experiments (DOE)-refined high-performance liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) methodology to investigate the hypothesis that glucoprivation alters astrocyte Gln content in a sex-specific manner. Critical mass spectrometric parameters for Gln derivative chromatographic response were identified by comparing the performance of central composite design, Box-Behnken design, and Optimal Design (OD)-A, -D, -I, -Distance, and -Modified Distance DOE models. The outcomes showed that the OD-A-generated response was superior relative to other design outcomes. Forecasted surface plot critical mass spectrometric parameters were maximized by OD-A, OD-Distance, and OD-Modified Distance designs. OD-A produced a high-performance method that yielded experimental run and forecasted surface plot maximal responses. Optimized mass spectrometric analysis of male versus female astrocyte Gln content provides novel evidence that glucoprivation significantly depletes this amino acid in female, but not in male, and that this sex-specific response may involve differential sensitivity to estrogen receptor signaling. This technological advance will facilitate efforts to ascertain how distinctive physiological and pathophysiological stimuli impact astrocyte Gln metabolism in each sex.


Subject(s)
Astrocytes/metabolism , Chromatography, High Pressure Liquid/methods , Glutamine/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Cells, Cultured , Female , Male , Models, Statistical , Rats , Rats, Sprague-Dawley
16.
J Mol Neurosci ; 71(5): 1082-1094, 2021 May.
Article in English | MEDLINE | ID: mdl-33231812

ABSTRACT

The ventromedial hypothalamic nucleus-ventrolateral part (VMNvl) is an estradiol-sensitive structure that controls sex-specific behavior. Electrical reactivity of VMNvl neurons to hypoglycemia infers that cellular energy stability is monitored there. Current research investigated the hypothesis that estradiol elicits sex-dimorphic patterns of VMNvl metabolic sensor activation and gluco-regulatory neurotransmission during hypoglycemia. Rostral-, middle-, and caudal-VMNvl tissue was separately micropunch-dissected from letrozole (Lz)- or vehicle-injected male and estradiol- or vehicle-implanted ovariectomized (OVX) female rats for Western blot analysis of total and phosphorylated 5'-AMP-activated protein kinase (AMPK) protein expression and gluco-stimulatory [neuronal nitric oxide synthase (nNOS); steroidogenic factor-1 (SF1) or -inhibitory (glutamate decarboxylase65/67 (GAD)] transmitter marker proteins after sc insulin (INS) or vehicle injection. In both sexes, hypoglycemic up-regulation of phosphoAMPK was estradiol-dependent in rostral and middle, but not caudal VMNvl. AMPK activity remained elevated after recovery from hypoglycemia over the rostro-caudal VMNvl in female, but only in the rostral segment in male. In each sex, hypoglycemia correspondingly augmented or suppressed nNOS profiles in rostral and middle versus caudal VMNvl; these segmental responses persisted longer in female. Rostral and middle segment SF1 protein was inhibited by estradiol-independent mechanisms in hypoglycemic males, but increased by estradiol-reliant mechanisms in female. After INS injection, GAD expression was inhibited in the male rostral VMNvl without estradiol involvement, but this hormone was required for broader suppression of this profile in the female. Neuroanatomical variability of VMNvl metabolic transmitter reactivity to hypoglycemia underscores the existence of functionally different subgroups in that structure. The regional distribution and estradiol sensitivity of hypoglycemia-sensitive VMNvl neurons of each neurochemical phenotype evidently vary between sexes.


Subject(s)
Estradiol/metabolism , Glucose/metabolism , Hypoglycemia/metabolism , Hypothalamus/metabolism , Protein Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Estradiol/pharmacology , Female , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hypothalamus/drug effects , Insulin/metabolism , Insulin/pharmacology , Male , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Protein Kinases/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
17.
ASN Neuro ; 12: 1759091420974134, 2020.
Article in English | MEDLINE | ID: mdl-33176438

ABSTRACT

Norepinephrine (NE) control of hypothalamic gluco-regulation involves astrocyte-derived energy fuel supply. In male rats, exogenous NE regulates astrocyte glycogen metabolic enzyme expression in vivo through 5'-AMP-activated protein kinase (AMPK)-dependent mechanisms. Current research utilized a rat hypothalamic astrocyte primary culture model to investigate the premise that NE imposes sex-specific direct control of AMPK activity and glycogen mass and metabolism in these glia. In male rats, NE down-regulation of pAMPK correlates with decreased CaMMKB and increased PP1 expression, whereas noradrenergic augmentation of female astrocyte pAMPK may not involve these upstream regulators. NE concentration is a critical determinant of control of hypothalamic astrocyte glycogen enzyme expression, but efficacy varies between sexes. Data show sex variations in glycogen synthase expression and glycogen phosphorylase-brain and -muscle type dose-responsiveness to NE. Narrow dose-dependent NE augmentation of astrocyte glycogen content during energy homeostasis infers that NE maintains, over a broad exposure range, constancy of glycogen content despite possible changes in turnover. In male rats, beta1- and beta2-adrenergic receptor (AR) profiles displayed bi-directional responses to increasing NE doses; female astrocytes exhibited diminished beta1-AR content at low dose exposure, but enhanced beta2-AR expression at high NE dosages. Thus, graded variations in noradrenergic stimulation may modulate astrocyte receptivity to NE in vivo. Sex dimorphic NE regulation of hypothalamic astrocyte AMPK activation and glycogen metabolism may be mediated, in part, by one or more ARs characterized here by divergent sensitivity to this transmitter.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Astrocytes/metabolism , Glycogen/metabolism , Norepinephrine/pharmacology , Receptors, Adrenergic/metabolism , Sex Characteristics , Adrenergic alpha-Agonists/pharmacology , Animals , Astrocytes/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Female , Gene Expression , Glycogen/analysis , Male , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization/methods
18.
J Pharm Biomed Anal ; 191: 113606, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32966939

ABSTRACT

Ventromedial hypothalamic nucleus (VMN) control of glucostasis is estradiol (E-2)-dependent. E-2 regulation of VMN reactivity to hypoglycemia may involve changes in signal volume due to altered aromatase expression. Here, high-resolution micropunch dissection tools for isolation of segmental VMN tissue were used with Design of Experiments-refined uHPLC-electrospray ionization-mass spectrometry (LC-ESI-MS) methodology to investigate the premise that effects of acute and/or recurring hypoglycemia on VMN E-2 content are sex-dimorphic. Relationships among multiple independent mass spectrometric operational variables were assessed by Central Composite Design (CCD) to amplify E-2 chromatogram area. Combinations of spectrometric temperature and gas pressure variable combinations were screened by Akaike Information Criterion correction modeling. A Fibonacci Sequence design using CCD minimum and maximal variable limits produced a small-run model that replicated maximal response from CCD. E-2 chromatographic response was further enhanced by optimization of solid phase extraction and instrument source and collision-induced dissociation voltages. In male rats, acute and chronic hypoglycemia respectively elevated or diminished E-2 concentrations relative to baseline in both rostral and caudal VMN. However, females exhibited regional variability in tissue E-2 profiles during acute (increased, rostral VMN; no change, caudal VMN) and recurring (no change, rostral VMN; increased, caudal VMN) hypoglycemia. Outcomes demonstrate requisite LC-ESI-MS sensitivity for E-2 quantification in small-volume brain tissue samples acquired with high-neuroanatomical specificity. Current methodology will facilitate efforts to investigate physiological consequences of VMN rostro-caudal segment-specific acclimation of E-2 profiles to recurring hypoglycemia, including effects on gluco-regulatory function, in each sex.


Subject(s)
Estradiol , Spectrometry, Mass, Electrospray Ionization , Animals , Brain/metabolism , Chromatography, High Pressure Liquid , Female , Glycogen/metabolism , Male , Rats , Rats, Sprague-Dawley
19.
Neurosci Lett ; 737: 135284, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32853718

ABSTRACT

Estrogen receptors control hypothalamic astrocyte glycogen accumulation in vitro. Glycogen metabolism impacts metabolic transmitter signaling in the ventromedial hypothalamic nucleus (VMN), a key glucoregulatory structure. Aromatase, the enzyme that converts testosterone to estradiol, is expressed at high levels in the VMN. Here, the aromatase inhibitor letrozole (Lz) was used alongside high-resolution microdissection/UPHLC-electrospray ionization-mass spectrometric methods to determine if neuroestradiol imposes sex-specific control of VMN glycogen content during glucostasis and/or glucoprivation. Testes-intact male and estradiol-replaced ovariectomized female rats were pretreated by lateral ventricular letrozole (Lz) infusion prior to subcutaneous insulin (INS) injection. Vehicle-treated female controls exhibited higher VMN glycogen content compared to males. Lz increased VMN glycogen levels in males, not females. INS-induced hypoglycemia (IIH) elevated (males) or diminished (females) rostral VMN glycogen accumulation. Induction of IIH in Lz-pretreated animals reduced male VMN glycogen mass, but augmented content in females. Data provide novel evidence for regional variation, in both sexes, in glycogen reactivity to IIH. Results highlight sex-dimorphic neuroestradiol regulation of VMN glycogen amassment during glucostasis, e.g. inhibitory in males versus insignificant in females. Locally-generated estradiol is evidently involved in hypoglycemic enhancement of male VMN glycogen, but conversely limits glycogen content in hypoglycemic females. Further research is needed to characterize mechanisms that underlie the directional shift in aromatase regulation of VMN glycogen in eu- versus hypoglycemic male rats and gain in negative impact in hypoglycemic females.


Subject(s)
Aromatase/metabolism , Blood Glucose/metabolism , Glycogen/metabolism , Hypoglycemia/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Aromatase Inhibitors/pharmacology , Female , Hypoglycemia/chemically induced , Insulin , Letrozole/pharmacology , Male , Rats , Rats, Sprague-Dawley , Sex Factors , Ventromedial Hypothalamic Nucleus/drug effects
20.
Mol Cell Endocrinol ; 518: 111000, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32853745

ABSTRACT

Hypoglycemia causes sex-reliant changes in hypothalamic astrocyte glycogen metabolism in vivo. The role of nuclear versus membrane astrocyte estrogen receptors (ER) in glucoprivic regulation of glycogen is unclear. Here, primary hypothalamic astrocyte cultures were treated with selective ER antagonists during glucoprivation to investigate the hypothesis that ER mediate sex-specific glycogen responses to glucoprivation. Results show that glucoprivic down-regulation of glycogen synthase expression is mediated by transmembrane G protein-coupled ER-1 (GPER) signaling in each sex and estrogen receptor (ER)-beta (ERß) activity in females. Glucoprivic inhibition of glycogen phosphorylase involves GPER and ERß in females, but ER-independent mechanisms in males. GPER, ERß, and ER-alpha (ERα) inhibit or stimulate AMPK protein expression in male versus female astrocytes, respectively. Glucoprivic augmentation of phospho-AMPK profiles in male glia was opposed by GPER activation, whereas GPER and ERß suppress this protein in females. Astrocyte ERα and GPER content was down-regulated in each sex during glucose deficiency, whereas ERß levels was unaltered (males) or increased (females). Glucoprivation correspondingly elevated or diminished male versus female astrocyte glycogen content; ER antagonism reversed this response in males, but not females. Results identify distinctive ER variants involved in sex-similar versus sex-specific astrocyte protein responses to withdrawal of this substrate fuel. Notably, glucoprivation elicits a directional switch or gain-of-effect of GPER and ERß on specific glial protein profiles. Outcomes infer that ERs are crucial for glucoprivic regulation of astrocyte glycogen accumulation in males. Alternatively, estradiol may act independently of ER signaling to disassemble this reserve in females.


Subject(s)
Astrocytes/metabolism , Glycogen/metabolism , Hypoglycemia/metabolism , Hypothalamus/metabolism , Animals , Astrocytes/cytology , Cells, Cultured , Estradiol/pharmacology , Female , Glucose/deficiency , Glucose/pharmacology , Glycogenolysis/physiology , Hypothalamus/cytology , Male , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/metabolism , Receptors, Estrogen/physiology , Sex Characteristics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...